Egy nemrég megjelent publikáció szerint, amiben novellák, regények és más irodalmi művek ezreit elemezték főleg az ún. szentiment analízis módszerére támaszkodva megállapították, hogy a világirodalomban kortól és kultúrától függetlenül mi tett egy-egy irodalmi alkotást klasszikussá.
Maga Vonnegut már az 1990-es évek derekán feltételezte, hogy a legnagyobb műveknek lehetnek közös jellemzői, kérdéses volt, hogy ezt sikerül-e valaha kimutatni kvantitatív módszerekkel. A kutatók arra jutottak, hogy a világirodalom legnagyobb műveiben maga a sztori – ha jól értem – bizonyos emocionális íveket tesz meg, ennek megfelelő érzetek sorozatát kiváltva a befogadóban függetlenül attól, hogy azt olvassa vagy például filmen nézi. Összesen hat ilyen patternt sikerült azonosítani, a teljes cikk [The emotional arcs of stories are dominated by six basic shapes ] nem éppen könnyed olvasmány, barátságosabb változata a MIT Tech Reviewban jelent meg nemrég.
Személyes véleményem, hogy az adatelemzés módszerei már nem is olyan kevés ideje rendelkezésre álltak ugyan, valójában csak néhány évvel ezelőtt, a cloud computing általánossá váltásával vált elérhetővé olyan mértékű számítási kapacitás elérhető áron, ami elhozta azt, amit ma big data-érának nevezünk.
Ebbe a világba engedett egy mélyebb, messzemenően szakmai betekintést a közel két hónappal ezelőtt megtartott Nextent által támogatott Big Data Universe 2016 konferencia Budapesten, az előadások közül három, egymástól nagyban eltérő felhasználási területet emelek ki példaként.
Ma már gépi tanulást használó algoritmusok segítik az informatikai biztonsági incidensek kezelését, ami természetesen csak akkor lehet hatékony, ha az valós időben történik. A magatartás-elemzésen alapuló behatolásérzékelő Blindspotter ha átlagosan 7 percenként ad ki riasztást szokatlan felhasználói aktivitás miatt, nyilvánvaló, hogy lehetetlen kivizsgálni ezeket külön-külön annak megállapításához, hogy valódi támadásról van-e szó.
Egyre gyakrabban van szükség big datából átvett módszerek bevetésére a nyelvtechnológia területén is. Egyre gyakrabban felmerülő igény egy-egy óriáscég vagy például politikai párt számára, hogy képet kapjon azzal kapcsolatban, hogy hogyan is változott a tömeg velük kapcsolatos megítélése, aminek kézenfekvő adatforrása az interneten adott időintervallumban keletkezett, főként közösségi médiából származó szöveges felhasználói tartalmak elemzése. A pozitív és negatív jelzők megkülönböztetése már rég nem jelent problémát a nyelvtechnológia számára, viszont ettől még a feladat bőven rejt magában buktatókat.
Ha elfogadjuk azt a tézist, hogy a big data valódi paradigmaváltás olyan szempontból is, hogy olyan mennyiségű információ kezelésére van szükség, amire a klasszikus módszerek nem alkalmasak, mik lehetnek azok, amik viszont igen? A megoldandó probléma jellegétől függően előfordulhat, hogy a legkomolyabb relációs adatbázis-kezelő rendszerek sem képesek elfogadható futásidő alatt annyi információt kezelni, amennyit szükséges. Itt lépnek képbe a gráf-adatbázisok.
Ahogy írtam, ha átlagosan 7 percenként fut be egy-egy riasztás, esélytelen lenne mindről felelősségteljesen megállapítani, hogy valódi támadási vagy támadási kísérlet-e vagy egyszerűen csak akkor lefutó szkript miatt jelenik meg egy-egy anomália. Viszont közel sem annyira könnyű megállapítani automatizáltan, hogy szokatlan felhasználó magatartásról vagy ún. robotról van szó.
A Balabit kutatói az ember természetes aktivitásának időbeli eloszlását veszik alapul.
Számításba vették, hogy nincs olyan alkalmazott, amelyik folyamatosan dolgozna, míg szkriptek közt természetesen lehetnek olyanok, amiknek folyamatosan vagy bizonyos, pontos időközönként futnak le. Ez pedig markerként használható annak megállapításához, hogy Valamilyen tevékenység közvetlenül emberi eredetű vagy egyszerűen kódfuttatás eredménye.
A robotdetektáló modul második fontos eleme ugyancsak az időre, mint adatforrásra támaszkodik. Egy húsvér felhasználó ha periódusonként vagy rendszeres időközönként is csinál valamit, azt időben nem annyira pontosan kezdi és fejezi be, mint egy robot, ezen kívül a tevékenység időbeli eloszlása mindegy ujjlenyomatként szolgál a felhasználó – vagy éppenséggel robot – azonosításához.
Röviden szólva, a Blindspotter időben riasztást tud kiadni olyan esetben, ha az emberitől eltérő aktivitást észlel a hálózat valamelyik felhasználójánál.
A Neticle szentiment elemzéssel foglalkozó előadásában a hallgatóság megismerkedhetett a műfaj 10 szabályával. A szentiment elemzés egyszerűsítve annak gép feldolgozása, hogy egy-egy adott szöveg milyen érzelmi töltést tükröz, ami közel sem olyan egyszerű, mint amilyennek tűnik. Ugyanis a gép számára alapvetően teljesen strukturálatlan adathalmazt, az emberi szöveget kell elemezhető egységekre bontani, azokat kontextusában vizsgálni. Több buktató viszont csak a tényleges elemzés közben derül ki, például egy 2013-as kutatásban mutatták ki, hogy a felháborodott, negatív hangvételű, dühös vélemények határozottan jobban terjednek mint a neutrális vagy pozitív hozzászólásokban hordozott üzenetek.
Hasonlóan kihívást jelent megtanítani a gépet az irónia kezelésére és osztályozására.
Viszont a jelzős szerkezetek előtt álló negáció azonosítása mára már minden nagyobb nyelvben megoldott.
Nem meglepő módon a gépi alapú elemzés pontosságát nagyban befolyásolja, ha előre tudott, hogy mit is kell elemezni. Így például olyan kifejezés, ami más helyen előfordulva pozitív töltésű lenne, adott szövegkörnyezetben vagy topikban gyakorlatilag nem hordoz semmilyen töltést.
A szövegbányászok egyetértenek abban, hogy ma már nem csak bizonyos írásművek szerzőinek azonosításában lehet segítségükre a nyelvtechnológia, de bizonyos folyamatok akár elő is jelezhetők a hagyományos- és közösségi médiában megjelent tartalmak tömeges elemzésével. Így például már egy 2011. szeptemberében megjelent Nature-cikk is foglalkozott azzal, hogy akár az arab tavasz is elvben előre jelezhető volt, ahogy az az előadásban elhangzott.
A nyelvtechnológiai megoldásokon keresztül azon kívül, hogy elemezhető a múlt és előre jelezhető bizonyos pontossággal a jövő, a nagyobb nyelvek esetén jobb szövegek előállításában is segítséget jelenthet mindenkinek, aki ezzel foglalkozik. Ilyen alkalmazások például a Textio azzal, hogy szinonimákat ajánl az íródó szövegben vagy éppen a Toneapi ami az elkészült szöveg hangulati jellemzőivel kapcsolatban képes egy elemzést adni az újságírók, szerkesztők kezébe.
Az idei Big Data Universen elhangzott előadások diasorai itt érhetők el.
UPDATE: gráfadatbázisokról hamarosan egy másik posztban